正弦定理を三角形の面積と関連付けます。
※ 図は Markdown に SVG を直接記述しています。詳細はこちらをご参照ください。
正弦定理
教科書でよく見る形の正弦定理は、円の直径との関係を含んだ形で記述されます。
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R \tag{1}$$$2R$ によって円との関係が示されますが、それを取り除いた部分について考えます。
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \tag{2}$$三角形の面積
三角形の面積は 2 辺とその間の角から求まります。
辺 $a$ と辺 $b$ とその間の角 $C$ に注目します。$a$ を底辺とすれば高さは $b\sin C$ となるため、$△ABC$ の面積が求められます。
$$△ABC\text{ の面積}=\frac{ab\sin C}2 \tag{3}$$同様に他の 2 辺とその間の角から面積が求められます。
$$△ABC\text{ の面積}=\frac{bc\sin A}2 \tag{4}$$$$△ABC\text{ の面積}=\frac{ac\sin B}2 \tag{5}$$(3) と (4) より
$$\begin{aligned} ab\sin C&=bc\sin A \\ a\sin C&=c\sin A \end{aligned}$$$$\therefore \frac{a}{\sin A}=\frac{c}{\sin C} \tag{6}$$同様にして (3) と (5) より
$$\frac{b}{\sin B}=\frac{c}{\sin C} \tag{7}$$(6) と (7) より (2) が示されました。
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \tag{2}$$つまり (2) は三角形の任意の 2 辺とその間の角から求めた面積が等しいことから導けます。
$$\frac{ab\sin C}2=\frac{bc\sin A}2=\frac{ac\sin B}2 \tag*{(3)(4)(5)}$$直径との関係
$2R$ との関係が残っています。これを半径 $R$ に着目して導きます。
外接円の中心 $D$ から各頂点 $A,B,C$ への距離は半径 $R$ です。
※ 外接円の中心は外心で、重心とは別の概念です。
$△ADB$ は二等辺三角形のため、辺 $AB$ の中点を $E$ とすると、$△ADE$ は直角三角形となります。
円周角の定理より $∠ADB$ は $∠C$ の 2 倍となるため、$∠ADE$ はその半分で $∠C$ と等しくなります。これより辺の長さの等式が得られます。
$$R\sin C=\frac c2$$$$\therefore 2R=\frac{c}{\sin C} \tag{8}$$(2) と (8) から (1) が示されました。
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R \tag{1}$$関連記事
二等辺三角形や円周角の定理を複素平面上で考えます。
参考
ピエモンテ語版の Wikipedia を参考にしました。
外積を使って説明されています。要点は以下の通りです。
$$\begin{aligned} \vec a+\vec b &=\vec c \\ \vec a\times\vec c &=\vec a\times(\vec a+\vec b) \\ &=\vec a\times\vec a+\vec a\times\vec b \\ &=\vec a\times\vec b \\ |\vec a\times\vec c|&=|\vec a\times\vec b| \\ ac\sin B&=ab\sin C \\ c\sin B&=b\sin C \\ \therefore\frac b{\sin B}&=\frac c{\sin C} \end{aligned}$$外積の長さは 2 本のベクトルが張る平行四辺形の面積を表します。その面積の半分が $\vec a,\vec b,\vec c$ によって表される三角形の面積となります。
今回の記事では外積を使わないで、三角形の面積に着目しました。